
’ .  
3 

Fred J. Taylor 
Graduate Student 

Department Qf Electrical Engineering 
UEliVeX’Sity Of COBQradO 

Boulder Colorado 

86- 003- 883 

AC s 

and technical suggestions. 

(CATEGORY) 

Student Member PEEE 



ogress in control of the sensitivity of a system subject 

to parameter variations h s not, in gener l o  kept pace with ad- 

vances achieved w i t h i n  t h e  framewo k of optimal control, Consider- 

le progress has been rn de in the design of linear systems with 

controlled sensitivity to arameter uncertainty. The foundation 

work in t h i s  c lass  of problems is due to Bode rlj9 with applications 

and extensions to co trol systems by osrowitz [2,33. Some methods 

have been presented i %he field af P control systems which 

are subject to parameter v a r i ~ t ~ Q n ~  ver its interval of definition. 

A survey of these methods is given by M e  Soboral Jr. r 4 Q .  Briefly, 

they will fall into the following two classes: 

erformance Se 

Consider any optimal ~ ~ n ~ r ~ ~  Paw which may be implemented efther 

in an open loop OF closed Poop s t r u c t u r e .  at is t h e  charge in the 

e ~ s t  index for the and closed loop structures when parameter 

variations are considered [5,613 ther variations of t h i s  idea 

exist in t h e  form of mfln max v a l u e s  of the cost index over all para- 

meter values. In hod P it is generally assumed that the parameters 

l i e  im a very sma ekgkbsrhsod of their  nominal (fixed) values. 

2, Trajectory Sa; 

n this case there is generated 8 trajectory in the solution 

spaces which, in t se of 881 ~~~~~~~~~ given cost index, is least 

sitive to p ranneter variations, The cost index is augmented by 

which is a m ~ ~ ~ ~ ~ e  sf the traje?Ctory epewdenee on parameter 

variations. This r e s u l t s ,  in general, in a ~ o ~ - ~ ~ ~ ~ ~ a ~  control 

for any specific s e t  of ~ ~ ~ a ~ ~ . ~ ~ ~  values with respect to the unaug- 

mented cost in 
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Kokototovic and Hel jLer '  have adapted an approach which pre- 

seryes t h e  concept of optimality. Their objective is a system 

which will be adaptive in %he sense that %he system will perform 

optimally for small parameter variations. owever, they assume an 

apriori feedback structure, do E P ~  examine how small the 'smaPl' 

parametes variations must be, and do not have a sensitivity analysis. 

They do not  show that the adaptive structure can yield a cost which 

approaches arbitrary close to the true optimal cost.  Also, their 

implementation restricts the number of parameters to the dimension 

of considered system, (although cmme at this computational 

problem may be overcome.) 

aper presents a method fop designing ip system which tries 

to spera-te optimally over its range of parameter variations. No 

structural constraints re apriori assumed; instead, a general 

mathematical fo~li-lu~at~o~ of the problem is presented, with t h e  sys- 

tem's structural form being a derive result, Given a bounded s e t  of 

allowable parameter variations, there is available a computable bound 

* Optimal variables 

e Adaptive variables ~ s c s m e t i m e s  referred to as "approximate 

timar variables) 

n 

Dena-tes transpose 

e9 > 



11, Formulat ion of t h e  
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timizsetion problem is t o  f i n d  a U Q t )  

of t h e  p l a n t  from some i n i t i a l  s t a t e  x ( t o )  

which t r a n s f e r s  the s t a t e  

= x t o  a p o i n t  i n  a a' 
g i v e n  t a r g e t  set S ,  such t h a t  C ea) is minimized. 

In order t h a t  a control u*( t )  be o tima1 it  is necessary t h a t  3 

(i) p*((t) and u * ( t )  a re  sc8Butio s of t h e  c a n o n i c a l  e q u a t i o n s  

t), X * C t )  X * ( t )  = x 0 (4)  

dictated by the target s e t  [9]. 

O.D,E,'S for the folagawin three cases: 

For xeE" 
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(iii) Combinations sf (i) and (ii) 

It is known [IO] t h a t  under  t h e  p r o p e r  r e d u c t i o n  r o u t i n e :  

(i) e = > (ii) c = s Qiii) 

Moreover, t h e  r e d u c t i o n s  p r e s e r v e  a l l  t h e  c o n t i n u i t y  p r o p e r t i e s  

between t h e  classes. Because there is a n  e q u i v a l e n c e  between (i), 

(ii), and (iii), t h i s  paper will eons i  er class (ii) f o r m u l a t i o n s  

only .  

For t h e  sake of comple teness ,  t, may be c o n s i d e r e d  a parameter 

i n  (i) i f  t h e  l a t te r ' s  dimension is i n c r e a s e d  by one, 

Proof: First c o n v e r t  t h e  n ~ ~ ~ u t o ~ ~ ~ ~ ~ ~  mth order O,H),E.  t o  a 

(n+ l )  order a ~ t ~ ~ ~ ~ o ~ s  O,D.E . ,  by Betting 

o p  

(t) = 1 0  X n + l  (to) = 

(by v i r t u e  of t h i s  t r a  sformation w e  s h a l l  restrict a l l  f u t u r e  

a n a l y s i s  t o  a u ~ ~ n o m ~ u s  * D c E e q s  which may have o r i g i n a l l y  been g i v e n  

as a nOnautonOmOus .D,E,  of e l a s s  ii> l e  $et z ( 7 )  = ( x * + ~  (CT) 9 

g ( Z ( 7 - l  1, zI-s;.> = (topxoL 

x (TI, . .-  xn(r> > and g ( 7 , ~ )  = (1, f ( T 9 x )  ) e  Then h (t> = 

Define:  a t o  be t h e  set  of a 4. admiss ib le  parameters s u c h  t h a t  

1, e * .  , M 9 
a = { n i I / c r i - r x i  n [ s M i 9 i =  

1 For some g i v e n  Mi 

Define: A to be a parameter v e c t o r ,  

If one considers  a plant t o  e paraBlete3?iZ@d by a Set of a ' s ,  

a&, then t h e  o p t i m i z a t i o n  would have  t o  be performed the  c a r d i n a l  

number of A t i m e s .  Therefore, one is motivated to seek an e x t e n s i o n  

of an e x i s t i n g  s0Buutiesn i 

s ide r  an expans ion  of -the ~ ~ ~ ~ ~ - ~ o ~ i ~ ~  in a, t r u n c a t e d  'kay3.o 

about t h e  nominal ~~~~~~~~~~~~ The l a t t e r  corresponds t o  t h e  optimal. 
n e s m t r o ~  u"(t9 which satisfies QG> der the condition 01 = 01 . Be- 

c a u s e  t h e  Hami l ton ian  fu ction is dependent  upon t h e  pa rame te r  vecLorP 
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which represents t h e  existing parameters of the plant. The intro- 

duction-of the g e n e r a l  parameter vector a into the Hamiltonian 

shall be accomplished 8s follows: 
n+m ~efine a new state vector y ?  . y E E " ~ A  2 E 

the initial parameter vector which, without any apriori knowledge 

of its value, will be assumed to be a e 

n 

Define the nominal amiltonian to be: ~ " ( y ( t ) ,  p(t), uct) 1 = 

Theorem 1. Let H ( y , p , u )  a @I a l l  its partial derivatives up t h r o u g h  

order k be continuous in a neighborhood N of (p", p n n  u ) e Then, f o r  

( e o  denote convex hull), ut M is corn a c t  therefore N = c o  (N). 

The East right hand t e r m  of ('7) will be used to generate t h e  

truncated error which is later in the paperQ For the moment, call 
k t h e  truncation error 0 ( e  1. 
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III, NECESSA R THE MIIN1 

4 Consider t h e  case where k = 3 ,  o p p ~ ) ~ c  reopal i n  some 

neighborhood N c (aa) =\ (x,uddt and the  d i f f e r e n t i a l  s i d e  con- 

0 
t 

s t r a i n t  @ = g ( y , ~ ) ,  

Notation: Let i k; -j + i + h  = k 
P?? 



a 
9 P d  3 

n(k) Therefore 3 a unique solution to (In), Also,  = - B y ( @  

pQf)  = e (82) 

H ~ P R ‘ ~ )  , p p u )  is Eipsehitzian i n  p p  p c ~  then 3 a unique solution 

to = g(p1 for cg u assumed given;  C ~ B P  t h e  unique s o l u t i o n  G. 
For N s u f f i c i e n t l y  s 

n - Y 

11, such that un is g l o b a l l y  optimal for 
n 

I= a, tcrt0,T], the implicit function theorem implies3 a unique 

U € M  3 u = g ( 0  n(k) 9 70) (13) 

-i a 1 assume the unique solutions to ( l a ) ,  (k) AS n(k) 4 w (ie: Ct 

(12), and (13) are: 

i) PO 
n & )  = n 

ii> co = Pn 
- 

n iii) u = u r e s p e c t i v e l y .  where ( i ) ,  (ii) and (fii) uniquely 

s a t i s f i e s  a system of coupled eqjuaticce 

Lemma 2. T ension s a t i s f i e s  t h e  inequal i ty  @(u*) s 

c ( U n )  under t h e  CQnditiOR a a* 



Substituting (IO) into (9) 

matrices A ( t ) ,  B ( t )  and C ( t )  ar in t h e  obvious way. (17) 

Equation (17) is recognize matrix Riccati differential 

then reduction t echniques  may be used to reduce t h e  c o ~ ~ u t ~ t ~ o ~ ~ ~  

problems i ] The realization, in bloc 

form, is given Pa Figu 

Figure z 



~t is assumed (i) that t h e  ac tua l  state x ( t )  can be! measured 
BI 1 time, (ii> x"(t) a d can be loaded i n t o  the system in 

rei1 ti&, and (iii) ., The question. of parameter 

is discuss r in the paper. It may be noted t h a t  

the feedback loop is ates a control effort which 

is i n  such a imize the cost pncurred, This preses- 

vation of optimality w i l l  be c a l l e d  ' ~ ~ ~ o ~ t i m ~ z ~ . ~ ~ ~ ~ ~ ' ~  

e r p r  approaches zero): 
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AMETER EST1 

n t  parameters can be monitored the *'recsp%ilmization" 

problem is direct. I n  ge t hope that aPSl the para- 

M e t e r s  can be m ajller2 consf er %he follow- 

using a s u f f i c i e  er of i ~ f o ~ ~ ~ ~ i ~ ~  bearing variables that are 

m&asusable in the aysteme3 Suppose we can monitor. directly the vasi- 

ables  X ( t )  nd u (9) x ( t )  and u ( t  1 measurable functions t h e n  we can 

7- 
d 

4' 

F i g ,  2 

'see Footnote 1. 
3Conjec ture :  The posed estimation ~~~~~~~ is: Equiva%ent to the 

'Monitorable implies :: 
estimation Of stochastic parameters, 

can be obtained by direct measurement 
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models (21) i n  some s e n s e  of an En mosme5 Define x: to be the 

s o l u t i o n  of (22) for (JI = a, i = cardinality sf A ,  Define 

Fig, 3 



Fig. 4 (a ,b )  



Now, severall engineeri g problems arise from (29) and are: (i) 1s 

i(tl) monitorable? (ii) re the ~ i m e n § ~ ~ ~ ~ l ~ t ~  restriction? 

I€ i(t,) is monitorable t h e  ae which mini 

from 8 direct eomputatfon. 

i = l,,,,,n, which are not moni must be cafculated 

om available monitorable system e s .  Some of the methods 

299) can be determined 

For ny, or all, of the gi(tl), 

which will facilitate these are: 

ne-sided derivatives for x t) sufficiently smooth and 

A s  sufficiently sma o ~ o r t ~ ~ ~ a ~  to t h e  apsiori smoothness 

judgment on x ( t )  e 

2 )  ff any element x i ( t )  of x ( t )  is not a function of a variable 

parameter then Xi (t) can be corn e e t l y  (ie: gi(t) = g ( x ( t )  ). 

3 )  Mesh refineme t methods where an observation interval is 

k, ti monotonically sampled at times tis t . c  [tiPtkj9 i = j, 

increasing. ethods consi 
1 

i) Differenti on of divided differences rw 
i 1 Derivative rmulas from differe e@ operations rn41 

iii) Central diffelrence formulas rw 
dified EuPerPs Formula r n 4 ~  

v)  weighted averaging of a sequemce of ki(t i9s)3(. i i( t i)  found 

by any method) which will smooth the d La and reduce t h e  effect of 

data points which have a Large variance from t h e  mean. 

O t h e r  methods which deserve attention are on-line gradient 

ues, learni g model techniques, sand a method of considering 

the parameters to 'belong to a class of piecewise continuous functions, 
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where b ( tS i )  = k(tl> 

g = m = n, t h e  aolut 1 i s  = ~ 7 1 , , b ( t ~ ) .  Otherwise ,  two 

general kinds o f  deg HP occur. R, E ,  ~ o ~ t ~ ~ s ~ ~  l is ted 

them as9 1; If b ( t l ) e  o e x a c t  solution is pdssible, 

s an nxm matrix of r a n  

2; if N(a(tp) 1 f 
7 

Case (1) might ar ise  if the methods used to compute b ( t l )  are  eon- 

s i d e r e d  to be n o i s y .  Si @e an exact solution is not possible we 

may r e q u e s t  a "best Beas% squares  fit*', n s i d e r  P new set Of 

then a solutio if it  exists9 is not  uni 

N e m P r f  s n a n d z i -  here A c t p )  is ~~~ ra k q, m e  n, ai€ ACE 
cv 

C ( t l > c E " ,  and i f  q en a solution exists,  If there- are more 

-unknowns t han  e q u a t i o n s ,  t h e  sider t h e  following quadratic 

gramming problem with an ordered v e c t o r  e st f u n c t i o n a l  will 
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s n t  in the system sensitivity if t h e  
k k sensitivity measur 

Under these  it 8" the variations from the 

t r u e  optimal cost of the ada tive system is f@S% t han ,  or equal eo, 

t h a t  Caf t h e  open 3.0 p system usfng u = 11 1s a control e f fo r t ,  

) is defined to be 8 u 1 = c(u") - c(u*)  2 O . ( 3 P )  

n 
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This paper has established an adaptive system which was based 

on the solution of a truncated Hamiltonia system of equations. 

The only restrictions placed on the problem's formulation was that 

the Hamiltonian belonged to class C [to2T) and Nuu(y,p,u)- l fO.  

From the approximate Hamiltonian, (ie: including bilinear terms), 

the adaptive control effort was found to be linear. The adaptive 

control was shown to, under certain neighborhood restrictions, 

3 s1 

reoptimize the system. A reduction in the system's sensitivity to 

parameter variations, over system using nomina1l.y optimal con- 

trol only, was gained by resptimiza 
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